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Power law dependence found on the lifetime of a photoconductor chaotic transient
numerically induced by a fixed-step algorithm
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(Received 5 August 1996

A direct procedure is proposed to determine whether a chaotic transient is caused by the dynamic of a
system or by the numerical artifact employed to solve it. This test is carried out by correlating the resulting
lifetimes of the chaotic transients for independent driving parameters of a nonlinear system. In this work the
transient behavior of a photoconductor model was investigated for two different parameters such as the capture
probability and the trap density. The model was integrated with a conventional fixed-step Runge-Kutta tech-
nique, displaying a complex intermittent transient that breaks down through bifurcation reversals into the fixed
points of the system. It was found that the corresponding average escape time of these transients follows a
power law dependence with the driving parameter, in accordance with the theories of Grebogi, Ott, and York.
However, for the two physically independent parameters involved, the average lifetime yielded exactly the
same critical exponent. These results directly imply the role of the algorithm as the common underlying source
where the chaotic transients are numerically induced, in complete agreement with previous studies on this
system[S1063-651X97)13401-9

PACS numbegps): 05.45+b, 05.40+j, 02.70~c, 72.40+w

INTRODUCTION dn
azG—nal(Nt—m)Jrﬁm—cln,
For the vast majority of nonlinear systems, dynamical
studies have to be performed with the help of numerical re-

sources, insofar as only the simpler models have analytical Z—rtT]:nal(Nt—m)— Somp— Bm, (h)
solution, and, even so, it is far easier to employ numerical

techniques. The trade-off, however, arises when the numeri- d

cal results not only differ but even interfere with the “real” ap_ G— Somp—Cy,p.

results. In particular, the proper choice of a numerical dt

method becomes relevant when the dynamics becomes cha- ) )

otic. This aspect has been discussed extensively in[REf. In short, systen(1) describes the photoconducting pro-

where the effect of the numerical integration of some non€ss in a semiconductor with one type of trap level, which is
linear test models was manifested as spurious asymptotﬂé’cat?d near the conduction band as to ensure a significative
states. Or, as in the case of a nonlinear photoconductdemission of the trapped electrons back to this band. Free
model recently studied2], the outcome of the numerical electrons are trapped with a probability into the trap level,
integration had its impact over the transient response in that @ rate proportional to the sites available at that level, given
form of an intermittent chaotic transient. Due to complexas the factona;(N;—m), whereN, is the trap density. Thus
dynamics that could result from an increasingly complicatedh€ trapped electron population increases at a rate propor-
nonlinear system, there is no distinctive line capable of defional to the same factor, such that there is an inverse rela-
limiting a truly chaotic behavior from that emerging out of tionship betweenr, andN, as to keep the same population
the numerics. In fact, both situations could be intricately in-rates. A more detailed description of the physical meaning of
terwoven. the other parameters is given in RE3).

The present work investigates the effect upon the escape It was found that there is a critiqal set of parameters for
time of the chaotic transient as two physically independentvhich the photoconductor systeft) is locally unstable ac-
photoconductor parameters are independently varied, withording to its eigenvalug$], and displays chaotic behavior
the purpose of determining up to what extent the resulting’i”d numerical overflow. However, as a result of the stiffness
escape time parameter dependence may disagree with psoduced by these parameters over the system, it was found

power law relation expected for a chaotic transigdjtas a  In Ref.[2] that a conventional fixed step Runge-Kutta inte-
result of the integration numerical artifact. gration algorithm could induce this chaotic behavior, as it
completely disappears when integrated with a variable step
integrator, such as the Gear method and the Adams-Moulton
integrators. These parameters values @re10'° electron-
hole pairsicri s, ¢;=1.5x10"2 s %, ¢,=1.5x10° s},

The photoconductor model consists of three coupled nong=10 " cm 3s%, and8=0.83 s *. In this study, the trap
linear ordinary differential equations describing the popula-densityN, and the capture probability, are to be varied as
tion densities of electrons, trapped electronm, and holes 10° cm 3<N,<4.85<10"° cm™® and 2.5€10° % cm™

p, given, respectively, ast] s 1<a;<4.641x10  cm 3 571, respectively.

EXPERIMENTAL METHOD
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FIG. 3. Average escape time of the chaotic transients with the
capture probability as the driving parameter. The dotted line corre-
sponds to the numerical results according to the RK algorithm with
step sizes=0.01. The continuous line is for a power law least-
squares fit to data with exponempt=1.15.

Figure 1 shows a typical transient response for the elec-
tron population forN,=8x10" cm ™3, and a;=2.5x10"1° RESULTS AND DISCUSSION
cm 3 s when integrated with the Runge-Kutta method for
a step sizes=0.05. The in;ermitt'ent chaotic s'tructure.anq thes*1Sal$4.64]><10’14 cm 2 57! was plotted as the dotted
breakdown by reverse bifurcations of the time series is "line of Fig. 3. Numerical integration was carried out for a

v_ealed in Fig. 1, when omitting the I_|nes joining the SUCCeSgtep size ofs=0.01, for which, beyondy,=4.641x10

sive points generated by the numerical outcome. The escapg,~3 51 the system enters numerical overflow. Despite the
time t. is taken as the average time in which the transiengppreciable linear trend followed by the escape time, a better
just enters a nonoscillatory state, going from the beginning afit to data is achieved by a power law dependence rather than
t=0 through the stages of chaotic intermittence and reverspy a straight line, in agreement with the theories of Grebogi,
bifurcations to the very moment that the transient reaches @tt, and Yorke[3]. The continuous line in Fig. 3 is an ex-
period-1 oscillation. A similar behavior is displayed for the cellent fit by least squares, corresponding to

trapped electrons and holes, as depicted in Fig. 2 showing a

parametric three-dimensional plot of m, and p. Chaotic (tey=Kq(a1—a) ™, 2
transients obtained through integration with smaller step

sizes yields a much more dense attra¢ts a matter of fact where a;=3.3x10 ** cm™® s7! is the critical parameter,

a “repeller,” since the orbits eventually escape that structurey;=1.15 is the critical exponent for the chaotic transient, and
following the straight line shown in Fig.)2 K,=38156.9 is a fitting parameter. Although this critical
exponent is close to 1, a definite power law dependence is
present, as slight changes ¢of produce appreciable alter-
ations in the solid curve of Fig. 3. Accordingly, the corre-
sponding log-log plot shown in Fig. 4 is close to a straight
line; the small but noticeable curvature present in Fig. 4 in-
dicates not a deviation from a simple type of power i@y

but instead the contribution of at least two power-dependent

FIG. 1. Transient response of the free electrons for
a;=2.5x1071 cm™3 57 and N, =8x 10" cm ™3 obtained with the
RK algorithm for a step size=0.05.

The average escape time obtained forx3s 4 cm™3
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FIG. 2. Repeller found in phase space faf=2.5x10"'° 109, (3 =)
cm 3 s tandN,=8x10"cm™2 for the RK algorithm withs=0.05.
After a finite time, the orbits falls into the system fixed point attrac-  FIG. 4. Log-log plot of the average escape time with the capture

tor through the straight line shown. probability showing a power law dependence.
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in agreement with our previous stuf®]. On the other hand,
since the capture probability and trap density are related in
2500 our model in an unigue way, we should consider, fundamen-
tally, the physical relation between these parameters. In ad-
dition, it should also be included that numerical consider-
1500 ations regarding the observed overflow emerge from the
unstable photoconductor.
This could be the case if, for a given set of parameters, the
500 system becomes unstable and/or qi#f6]. For a fixed-step
integration routine such as the Runge-Kutta algorithm em-
1 2 3 4 5 ployed here, numerical overflow occurs when initially small
errors propagate through the integration and become un-
) bounded. Reducing the step size could overcome this prob-
lem [2], but it makes an otherwise efficient algorithm com-
FIG. 5. Average escape time of the chaotic transients with theputationally inefficient. With a self-adjusting routine such as
trap density as the driving parameter. The dotted line corresponds e Gear schemg8], the number of integration steps are
the numerical results according to the RK algorithm with step sizéminimized, and, thus, it is possible to reduce the computation
$=0.05. The continuous line corresponds to a power series fit iqimq a0 the accumulated round-off error, while meeting sta-
data. The dashed line is for a simple power law fit to data wi’[hbility considerations. Most important, as a direct conse-
exponenty=1.15. guence, a self-adjusting step-order routine improves numeri-

terms. A similar situation was reported in experimental mea—Cal stability, as the region of stapility of the algorithm is

surements of chaotic transients detected in a ferromagnet]ﬁ:ompar"’Itlvely _Ia_rger W!th respect to the stability region of
material under dc and rf magnetic fieldd, where deviation ixed-step explicit algorithms such as the Runge-KGR&)

of a simple power law was found for those chaotic transient$cheme. Such stability regions are representations of the sta-
where intermittent behavior was present. For the photocorRility of a given method standardized through the integration
ductor systent1), the chaotic transients were all intermittent. Of the test equatiog’=\y. Here an algorithm will be stable

In Fig. 5, a plot of the average escape time versus thé any single error made in applying the method will have an
density of traps is represented as a dotted line fof 10effect such that the results still imitates the exact solution.

cm3<N,<5x10"° cm™°. In this case, the Runge-Kutta in- This implies certain constraints for the values of the step size
tegration was done for a step size equal to 0.05. It was foundnd the time constants, that can be represented as regions in
that for 1¢ cm 3<N,<8x10'2 cm 3, the escape time re- the complex plane in terms of the factox [8]. Then, for a
mains constantt(=3135 a.u), decreasing afterwards &4 given set of parameters, the resulting time constants may
approaches 4.8610" cm 3. The system transient behavior severely limit the size of the integration step, in order to keep
is chaotic forN,<3x 10" cm 3, and quasiperiodic for higher theh\ factor inside the stability region of a given algorithm.
impurities concentrations. Fot,>4.85<10" cm 3 the pho-  Otherwise, the small errors will be magnified exponentially,
toconductor becomes unstable, as a further increase beyongsulting in numerical overflow. This situation was observed
this value produces numerical overflow. It was found that thavhen integrating the photoconductor equatidhswith the

best fit to data was met for a sixth-order power series, indiRK scheme, and avoided when employing implicit routines
cated by the continuous line of Fig. 5. The dashed line repsuch as the Gear and Adam-Moulton schefi&ds

resents the next best fit to data according to a power law This behavior is particularly relevant for rigid systems
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dependence, and is given as with its disparate time scales, such as the present one. Al-
though for the first order test equation the eigenvaluis
(te) =Ka(Ne—Ny) 72, €)) simply related to the time constant asl/\, for the more

complicated nonlinear systems the time constants are not so

with N.=4.8<10'° cm 2 being the critical parameter, obvious. Nevertheless, an estimation of the time scales could
v,=1.15 the critical exponent, artd,=514 a fitting param- be accomplished through the system eigenvalues, with the
eter. Although small, the deviation for the power law(8} Jacobian evaluated at several poif$
is possibly related to a reduced numerical resolution result- From a physical perspective, the photoconductor dynam-
ing from the larger step size employed. Thus there is a mori&s could become very complex due to the various competi-
pronounced scattering of the data, in particular at the higlive processes involved. The kinetics of the charge carriers is
impurity region where the system became unstable; see Figontrolled by processes of generation, trapping, and recom-
5. As before, the corresponding log-log plot deviates frombination, as expressed through the nonlinear rate equations
the simple power law dependen®. Nevertheless, it is re- (1). These equations include feedback between the electrons
markable that the average escape time for the trap densifyom the conduction band and the traps. In particular, the
approaches the same critical exponeptl1.15, already instability of the system is expected, as the role of the traps
found for the capture probability. becomes predominant. The interplay between the conduction

The fact that for variations of both; andN; the critical band and the traps is enhanced, and becomes significant as
exponentsy are the same, strongly suggests that the chaotithe traps are filled. This situation is achieved in several ways,
transients are being caused by the numerical algorithm, artsvo of which are considered here in particular. One is to
not by the intrinsic dynamic of the photoconductor system,ncrease the capture probability. The other is to reduce the
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number of sites available in the traps by simply keeping aare part of the standard procedures usually apgksda pa-
low trap density for a relatively high generation rate and arameter is variedwhen searching for chaotic dynamics. In
given capture probability. particular, there is a great similitude between the time series
In fact, chaotic transients were consistently observedf Fig. 1 and a variety of structures reported in the literature:
when the capture probability was increag@dior when the in the Belousov-Zhabotinsky-simulated chemical reaction as
trap density was decreasésee Fig. 1, while keeping the a function of the flow rat¢9]; in a model involving pertur-
rest of the parameters fixed. Thus the origin of the transienbation of the respiratory system with the phase of the stimuli
could be directly related to the number of sites available atycle as the bifurcation parametdiQ]; in experimental cha-
the trap level, which, in turn, is related to a strong interactionotic heart dysrhytmias as a function of the pacing cycle
between trap density and capture probability. Conversely, aengths[11]; and other “antimonotonic” structures showing
the trap density increases, this interplay is not so predomibifurcation reversal§12]. However, it is worth emphasizing
nant, as the number of available sites rises and no chaotitat the most striking feature here is that the photoconductor
transient is observed so far; however, as the population of thehaotic patterns and bifurcation reversals are found directly
impurities increases, the photoconductor becomes unstablis the time series. Such a behavior was reported in [28f.
as physically expected; thus a numerical scheme such as théere it was proposed and discussed that the deterministic
one employed in this study may become unstable, especiallyonlinear iterative rules specific of the fixed-step Runge-
if integrating over a stiff system. In short, while for the cap- Kutta algorithm were responsible for these chaotic transients.
ture probability«; the route to overflow coincides with an Therefore, as time progresses, it is not in the space parameter
increasingly chaotic transient, as reported in R&f, the  where these chaotic structures are to be found. The most
opposite was found for the trap densitids. Therefore, direct proof that this dynamic is caused by the algorithm was
these results might be interpreted as if there are physicaliven when an adaptive algorithm was employed; here, re-
situations capable of inducing a type of unstability over thegardless of the parameters values, we observed neither over-
(fixed step numerical algorithm different from those produc- flow nor chaos when integrating with a variable step-order
ing plain overflow. Both physical and numerical factors af-method[13].
fect the stability of the system in a similar manner and, Now, focusing on the time series, a chaotic transient
hence, separation of the origin becomes a crucial task.  should display a power law dependence according to the nu-
From a numerical perspective, the photoconductor stabilmerical studies of Grebogi, Ott, and York&]. Their theory
ity could be determined examining the system eigenvaluestates that a chaotic transient occurs when a stable chaotic
[6] (just the real part, as the imaginary part is negligibly attractor becomes unstable, and is destroyed when colliding
small). Thet, (N,) behavior shown in Fig. 5 coincides with with the boundary of attraction of a nonchaotic attractor at
appreciable changds magnitude for the system eigenval- some critical value of the driving parameter. This type of
ues: asN; increases, one of the eigenvalues increasesvent, in which the formerly chaotic attractor is destroyed, is
steadily, another eigenvalue decreases very fast, and the realled a boundary crisis, and the escape timis the finite
maining eigenvalue changes moderately for the range studidiine spent by trajectories initialized in the region of the de-
(A\;: —0.000 75-—11.26,\,: —833 323-—89.75, and\;: stroyed chaotic attractor moving around its neighborhood be-
—0.000 75-—0.000 015 for 16 cm‘3<Nt<4.8><1 5  fore escaping to a stable nonchaotic attractor. The average
cm 3). As N, approaches and passes the breakpoint wherduration (t,) of the chaotic transient is given ds.)=(p
overflow was observedN;=>4.85<10° cm~3 for s=0.05,  —p.)?, with y the critical exponent ang, the critical pa-
there is a notorious change in the eigenval(reagnitud¢  rameter at which the collision occurs. Thus, in a boundary
behavior: the rate of increase for the first eigenvalue is enerisis, for parameter values just past the crisis point, the at-
hanced, and the magnitude of the other eigenvalue reversemictor no longer exists, and the trajectories appear to move
from decreasing to a great increadg: —11.72-—116.78, chaotically, like before the crisis occurred, but only for a
N, —86.2-—124 709,\5: —0.000 015-—2.07x10°8 for finite time. This law has been numerically and experimen-
5x10" cm 3<N,<5%x10" cm3 this upper limit corre- tally verified in several casdd4].
sponds to a degenerated semicondyctdhese variations In the present work, results for the escape time with the
may induce an algorithm to become unstable, and thus toapture probability and the trap densities as the driving pa-
overflow, since the region of stability of a given algorithm is rameterd Eqgs. (2) and (3), respectively are in close agree-
greatly dependent on the inverse relationship of the step sizment with a power law dependence predicted by theories of
s and the eigenvalug [8]. That explains why reducing the Ref. [3]. For the capture probability, the chaotic transient
step size was enough for the overflow to disappear. A similawas observed for values of the parameter past
relationship between the eigenvalues and the numerical over;=3.5x10 1% cm™2 s72, which is in good agreement with
flow has been reported for the capture probabilifyin Ref.  the value found for the critical parameter,=3.3x10 4
[2], with the onset of the overflow coincidentally happeningcm 3 s in Eq. (2). However, the transient behavior for the
in the direction where the lifetime of the chaotic transienttrap parameter deserves a closer look.
increases. With the trap density as the driving parameter, chaotic
Like the time series reported in R¢R] for changes in the transients were observergh to N<3x10™ cm™3; for higher
capture probability, those obtained for changes in the trapalues the system falls into a nonchaotic attractor. The value
densities(see Fig. 1 were chaotic according to their sensi- found for the critical parameter wad,=4.8x10" cm 3,
tivity to initial conditions, their broad power spectrum, a which is very close to the breakpoint of the onset of over-
characteristic return map for the variables, and the emerflow, N,=4.85<10" cm . Following the ideas of Grebogi,
gence of an attractor in phase spdsee Fig. 2, these tools Ott, and Yorkd 3], the critical parameter for this case should
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be expected around,=3x10" cm~3, where the onset of CONCLUSION
chaotic transients was observed with tNe parameter de-
creasing[thus, in Eq.(3), the corresponding critical param-  The average lifetime of the chaotic transients found in a
eter N appears to be subtracted from the driving parametephotoconductor system with one trap level was examined
N;, rather than the opposite as in E@)]. Thus it could be  separately as a function of the capture probability and the
considered a subset of the escape time data for the range @gp density. The escape time yielded a power law depen-
N; where all transients were strictly chaotic, as for W€  dence for each driving parameter, as expected for chaotic
case of Fig. 4; nevertheless, it was found that for these sgeansients, but with exactly the same critical exponent. This
lected points a_3f|t with the power law of Ed3) with 5 ajelism is considered direct evidence that the integration
No=3x10'° cm _(and_72=1.1g)159|ve_53 a great deviation.  qrithm produces the chaotic transient and, thus, that the
ggg;’iﬁiﬁpgi;ﬁlyﬁc&i‘?(f V\}er irﬁ?urit?sre%?;%reT%Zreesfo?e escape time reflects this unique source. These results are in
’ : 'agreement with a previous study of the photoconductor

there is no critical paramet®\, that just passes by to unfold odel[2], where simply changing the numerical integration
a boundary crisis and thus a truly chaotic transient, despitg1 o Ply ging 1 . 9
technique revealed an algorithm induction of chaos. For

the fact that a truly chaotic “object” is actually seen in the | h h lead
time series. This in turn directly implies that if there is a more complex systems, where such a strategy may not lea

combination of parameters causing the system to beconi@ similar direct resultg, examining the degre.e of correlation
unstable and to overflow numerically in one extreme of theP@fween the escape times for two or more independent pa-
curve of Fig. 5, there is another combination of parameteréamete_rs could be a value and even easier option in detecting
numericallyresponsible for the chaotic behavior at the othefumerically created chaos.

end of this unique curve. In fact, such a chaos-producing

alliance of parameters is givespecifically o, andN,), as

they physically merge into one common factor: the available ACKNOWLEDGMENTS
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