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Power law dependence found on the lifetime of a photoconductor chaotic transient
numerically induced by a fixed-step algorithm

Alicia Serfaty de Markus
Centro de Estudios Avanzados en Optica, Facultad de Ciencias, Universidad de los Andes, Me´rida, Venezuela

~Received 5 August 1996!

A direct procedure is proposed to determine whether a chaotic transient is caused by the dynamic of a
system or by the numerical artifact employed to solve it. This test is carried out by correlating the resulting
lifetimes of the chaotic transients for independent driving parameters of a nonlinear system. In this work the
transient behavior of a photoconductor model was investigated for two different parameters such as the capture
probability and the trap density. The model was integrated with a conventional fixed-step Runge-Kutta tech-
nique, displaying a complex intermittent transient that breaks down through bifurcation reversals into the fixed
points of the system. It was found that the corresponding average escape time of these transients follows a
power law dependence with the driving parameter, in accordance with the theories of Grebogi, Ott, and York.
However, for the two physically independent parameters involved, the average lifetime yielded exactly the
same critical exponent. These results directly imply the role of the algorithm as the common underlying source
where the chaotic transients are numerically induced, in complete agreement with previous studies on this
system.@S1063-651X~97!13401-8#

PACS number~s!: 05.45.1b, 05.40.1j, 02.70.2c, 72.40.1w
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INTRODUCTION

For the vast majority of nonlinear systems, dynami
studies have to be performed with the help of numerical
sources, insofar as only the simpler models have analy
solution, and, even so, it is far easier to employ numer
techniques. The trade-off, however, arises when the num
cal results not only differ but even interfere with the ‘‘rea
results. In particular, the proper choice of a numeri
method becomes relevant when the dynamics becomes
otic. This aspect has been discussed extensively in Ref.@1#,
where the effect of the numerical integration of some n
linear test models was manifested as spurious asymp
states. Or, as in the case of a nonlinear photocondu
model recently studied@2#, the outcome of the numerica
integration had its impact over the transient response in
form of an intermittent chaotic transient. Due to compl
dynamics that could result from an increasingly complica
nonlinear system, there is no distinctive line capable of
limiting a truly chaotic behavior from that emerging out
the numerics. In fact, both situations could be intricately
terwoven.

The present work investigates the effect upon the esc
time of the chaotic transient as two physically independ
photoconductor parameters are independently varied,
the purpose of determining up to what extent the result
escape time parameter dependence may disagree w
power law relation expected for a chaotic transient@3# as a
result of the integration numerical artifact.

EXPERIMENTAL METHOD

The photoconductor model consists of three coupled n
linear ordinary differential equations describing the popu
tion densities of electronsn, trapped electronsm, and holes
p, given, respectively, as@4#
551063-651X/97/55~2!/1342~5!/$10.00
l
-
al
l
ri-

l
ha-

-
tic
or

e

d
-

-

pe
t
th
g
a

n-
-

dn

dt
5G2na1~Nt2m!1bm2c1n,

dm

dt
5na1~Nt2m!2d0mp2bm, ~1!

dp

dt
5G2d0mp2c2p.

In short, system~1! describes the photoconducting pr
cess in a semiconductor with one type of trap level, which
located near the conduction band as to ensure a significa
reemission of the trapped electrons back to this band. F
electrons are trapped with a probabilitya1 into the trap level,
at a rate proportional to the sites available at that level, gi
as the factorna1(Nt2m), whereNt is the trap density. Thus
the trapped electron populationm increases at a rate propo
tional to the same factor, such that there is an inverse r
tionship betweena1 andNt as to keep the same populatio
rates. A more detailed description of the physical meaning
the other parameters is given in Ref.@5#.

It was found that there is a critical set of parameters
which the photoconductor system~1! is locally unstable ac-
cording to its eigenvalues@6#, and displays chaotic behavio
and numerical overflow. However, as a result of the stiffn
produced by these parameters over the system, it was fo
in Ref. @2# that a conventional fixed step Runge-Kutta int
gration algorithm could induce this chaotic behavior, as
completely disappears when integrated with a variable s
integrator, such as the Gear method and the Adams-Mou
integrators. These parameters values areG51016 electron-
hole pairs/cm2 s, c151.531023 s21, c251.531025 s21,
d0510215 cm23 s21, andb50.83 s21. In this study, the trap
densityNt and the capture probabilitya1 are to be varied as
106 cm23,Nt,4.8531015 cm23 and 2.5310215 cm23

s21,a1,4.641310214 cm23 s21, respectively.
1342 © 1997 The American Physical Society
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55 1343POWER LAW DEPENDENCE FOUND ON THE LIFETIME . . .
Figure 1 shows a typical transient response for the e
tron population forNt5831014 cm23, and a152.5310215

cm23 s215 when integrated with the Runge-Kutta method f
a step sizes50.05. The intermittent chaotic structure and t
breakdown by reverse bifurcations of the time series is
vealed in Fig. 1, when omitting the lines joining the succ
sive points generated by the numerical outcome. The es
time te is taken as the average time in which the transi
just enters a nonoscillatory state, going from the beginnin
t50 through the stages of chaotic intermittence and reve
bifurcations to the very moment that the transient reache
period-1 oscillation. A similar behavior is displayed for th
trapped electrons and holes, as depicted in Fig. 2 showi
parametric three-dimensional plot ofn, m, and p. Chaotic
transients obtained through integration with smaller s
sizes yields a much more dense attractor~as a matter of fact
a ‘‘repeller,’’ since the orbits eventually escape that struct
following the straight line shown in Fig. 2!.

FIG. 1. Transient response of the free electrons
a152.5310215 cm23 s21 andNt5831014 cm23 obtained with the
RK algorithm for a step sizes50.05.

FIG. 2. Repeller found in phase space fora152.5310215

cm23 s21 andNt5831014 cm23 for the RK algorithm withs50.05.
After a finite time, the orbits falls into the system fixed point attra
tor through the straight line shown.
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RESULTS AND DISCUSSION

The average escape time obtained for 3.5310214 cm23

s21<a1<4.641310214 cm23 s21 was plotted as the dotte
line of Fig. 3. Numerical integration was carried out for
step size ofs50.01, for which, beyonda154.641310214

cm23 s21, the system enters numerical overflow. Despite
appreciable linear trend followed by the escape time, a be
fit to data is achieved by a power law dependence rather
by a straight line, in agreement with the theories of Grebo
Ott, and Yorke@3#. The continuous line in Fig. 3 is an ex
cellent fit by least squares, corresponding to

^te&5K1~a12ac!
g1, ~2!

where ac53.3310214 cm23 s21 is the critical parameter
g151.15 is the critical exponent for the chaotic transient, a
K1538 156.9 is a fitting parameter. Although this critic
exponent is close to 1, a definite power law dependenc
present, as slight changes ofg1 produce appreciable alter
ations in the solid curve of Fig. 3. Accordingly, the corr
sponding log-log plot shown in Fig. 4 is close to a straig
line; the small but noticeable curvature present in Fig. 4
dicates not a deviation from a simple type of power law~2!
but instead the contribution of at least two power-depend

r

-

FIG. 3. Average escape time of the chaotic transients with
capture probability as the driving parameter. The dotted line co
sponds to the numerical results according to the RK algorithm w
step sizes50.01. The continuous line is for a power law leas
squares fit to data with exponentg51.15.

FIG. 4. Log-log plot of the average escape time with the capt
probability showing a power law dependence.
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1344 55ALICIA SERFATY de MARKUS
terms. A similar situation was reported in experimental m
surements of chaotic transients detected in a ferromagn
material under dc and rf magnetic fields@7#, where deviation
of a simple power law was found for those chaotic transie
where intermittent behavior was present. For the photoc
ductor system~1!, the chaotic transients were all intermitten

In Fig. 5, a plot of the average escape time versus
density of traps is represented as a dotted line for6

cm23<Nt<531015 cm23. In this case, the Runge-Kutta in
tegration was done for a step size equal to 0.05. It was fo
that for 106 cm23,Nt,831012 cm23, the escape time re
mains constant (tc53135 a.u.!, decreasing afterwards asNt
approaches 4.8531015 cm23. The system transient behavio
is chaotic forNt,331015 cm23, and quasiperiodic for highe
impurities concentrations. ForNt.4.8531015 cm23 the pho-
toconductor becomes unstable, as a further increase be
this value produces numerical overflow. It was found that
best fit to data was met for a sixth-order power series, in
cated by the continuous line of Fig. 5. The dashed line r
resents the next best fit to data according to a power
dependence, and is given as

^te&5K2~Nc2Nt!
g2, ~3!

with Nc54.831015 cm23 being the critical parameter
g251.15 the critical exponent, andK25514 a fitting param-
eter. Although small, the deviation for the power law fit~3!
is possibly related to a reduced numerical resolution res
ing from the larger step size employed. Thus there is a m
pronounced scattering of the data, in particular at the h
impurity region where the system became unstable; see
5. As before, the corresponding log-log plot deviates fr
the simple power law dependence~3!. Nevertheless, it is re
markable that the average escape time for the trap den
approaches the same critical exponentg51.15, already
found for the capture probability.

The fact that for variations of botha1 andNt the critical
exponentsg are the same, strongly suggests that the cha
transients are being caused by the numerical algorithm,
not by the intrinsic dynamic of the photoconductor syste

FIG. 5. Average escape time of the chaotic transients with
trap density as the driving parameter. The dotted line correspon
the numerical results according to the RK algorithm with step s
s50.05. The continuous line corresponds to a power series fi
data. The dashed line is for a simple power law fit to data w
exponentg51.15.
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in agreement with our previous study@2#. On the other hand
since the capture probability and trap density are related
our model in an unique way, we should consider, fundam
tally, the physical relation between these parameters. In
dition, it should also be included that numerical consid
ations regarding the observed overflow emerge from
unstable photoconductor.

This could be the case if, for a given set of parameters,
system becomes unstable and/or stiff@2,6#. For a fixed-step
integration routine such as the Runge-Kutta algorithm e
ployed here, numerical overflow occurs when initially sm
errors propagate through the integration and become
bounded. Reducing the step size could overcome this p
lem @2#, but it makes an otherwise efficient algorithm com
putationally inefficient. With a self-adjusting routine such
the Gear scheme@8#, the number of integration steps a
minimized, and, thus, it is possible to reduce the computa
time and the accumulated round-off error, while meeting s
bility considerations. Most important, as a direct cons
quence, a self-adjusting step-order routine improves num
cal stability, as the region of stability of the algorithm
comparatively larger with respect to the stability region
fixed-step explicit algorithms such as the Runge-Kutta~RK!
scheme. Such stability regions are representations of the
bility of a given method standardized through the integrat
of the test equationy85ly. Here an algorithm will be stable
if any single error made in applying the method will have
effect such that the results still imitates the exact soluti
This implies certain constraints for the values of the step s
and the time constants, that can be represented as regio
the complex plane in terms of the factorhl @8#. Then, for a
given set of parameters, the resulting time constants m
severely limit the size of the integration step, in order to ke
thehl factor inside the stability region of a given algorithm
Otherwise, the small errors will be magnified exponentia
resulting in numerical overflow. This situation was observ
when integrating the photoconductor equations~1! with the
RK scheme, and avoided when employing implicit routin
such as the Gear and Adam-Moulton schemes@2#.

This behavior is particularly relevant for rigid system
with its disparate time scales, such as the present one.
though for the first order test equation the eigenvaluel is
simply related to the time constant as21/l, for the more
complicated nonlinear systems the time constants are no
obvious. Nevertheless, an estimation of the time scales c
be accomplished through the system eigenvalues, with
Jacobian evaluated at several points@6#.

From a physical perspective, the photoconductor dyna
ics could become very complex due to the various comp
tive processes involved. The kinetics of the charge carrier
controlled by processes of generation, trapping, and rec
bination, as expressed through the nonlinear rate equat
~1!. These equations include feedback between the elect
from the conduction band and the traps. In particular,
instability of the system is expected, as the role of the tr
becomes predominant. The interplay between the conduc
band and the traps is enhanced, and becomes significa
the traps are filled. This situation is achieved in several wa
two of which are considered here in particular. One is
increase the capture probability. The other is to reduce
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55 1345POWER LAW DEPENDENCE FOUND ON THE LIFETIME . . .
number of sites available in the traps by simply keepin
low trap density for a relatively high generation rate and
given capture probability.

In fact, chaotic transients were consistently observ
when the capture probability was increased@2# or when the
trap density was decreased~see Fig. 1!, while keeping the
rest of the parameters fixed. Thus the origin of the trans
could be directly related to the number of sites available
the trap level, which, in turn, is related to a strong interact
between trap density and capture probability. Conversely
the trap density increases, this interplay is not so predo
nant, as the number of available sites rises and no cha
transient is observed so far; however, as the population o
impurities increases, the photoconductor becomes unst
as physically expected; thus a numerical scheme such a
one employed in this study may become unstable, espec
if integrating over a stiff system. In short, while for the ca
ture probabilitya1 the route to overflow coincides with a
increasingly chaotic transient, as reported in Ref.@2#, the
opposite was found for the trap densitiesNt . Therefore,
these results might be interpreted as if there are phys
situations capable of inducing a type of unstability over
~fixed step! numerical algorithm different from those produ
ing plain overflow. Both physical and numerical factors a
fect the stability of the system in a similar manner an
hence, separation of the origin becomes a crucial task.

From a numerical perspective, the photoconductor sta
ity could be determined examining the system eigenval
@6# ~just the real part, as the imaginary part is negligib
small!. The te (Nt) behavior shown in Fig. 5 coincides wit
appreciable changes~in magnitude! for the system eigenval
ues: asNt increases, one of the eigenvalues increa
steadily, another eigenvalue decreases very fast, and th
maining eigenvalue changes moderately for the range stu
~l1: 20.000 75→211.26,l2: 2833 323→289.75, andl3:
20.000 75→20.000 015 for 106 cm23,Nt,4.831015

cm23!. As Nt approaches and passes the breakpoint wh
overflow was observed (Nt>4.8531015 cm23 for s50.05!,
there is a notorious change in the eigenvalues~magnitude!
behavior: the rate of increase for the first eigenvalue is
hanced, and the magnitude of the other eigenvalue reve
from decreasing to a great increase~l1: 211.72→2116.78,
l2: 286.2→2124 709,l3: 20.000 015→22.0731028 for
531015 cm23,Nt,531019 cm23; this upper limit corre-
sponds to a degenerated semiconductor!. These variations
may induce an algorithm to become unstable, and thu
overflow, since the region of stability of a given algorithm
greatly dependent on the inverse relationship of the step
s and the eigenvaluel @8#. That explains why reducing th
step size was enough for the overflow to disappear. A sim
relationship between the eigenvalues and the numerical o
flow has been reported for the capture probabilitya1 in Ref.
@2#, with the onset of the overflow coincidentally happeni
in the direction where the lifetime of the chaotic transie
increases.

Like the time series reported in Ref.@2# for changes in the
capture probability, those obtained for changes in the t
densities~see Fig. 1! were chaotic according to their sens
tivity to initial conditions, their broad power spectrum,
characteristic return map for the variables, and the em
gence of an attractor in phase space~see Fig. 2!; these tools
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are part of the standard procedures usually applied~as a pa-
rameter is varied! when searching for chaotic dynamics.
particular, there is a great similitude between the time se
of Fig. 1 and a variety of structures reported in the literatu
in the Belousov-Zhabotinsky-simulated chemical reaction
a function of the flow rate@9#; in a model involving pertur-
bation of the respiratory system with the phase of the stim
cycle as the bifurcation parameter@10#; in experimental cha-
otic heart dysrhytmias as a function of the pacing cy
lengths@11#; and other ‘‘antimonotonic’’ structures showin
bifurcation reversals@12#. However, it is worth emphasizing
that the most striking feature here is that the photocondu
chaotic patterns and bifurcation reversals are found dire
in the time series. Such a behavior was reported in Ref.@2#,
where it was proposed and discussed that the determin
nonlinear iterative rules specific of the fixed-step Rung
Kutta algorithm were responsible for these chaotic transie
Therefore, as time progresses, it is not in the space param
where these chaotic structures are to be found. The m
direct proof that this dynamic is caused by the algorithm w
given when an adaptive algorithm was employed; here,
gardless of the parameters values, we observed neither o
flow nor chaos when integrating with a variable step-ord
method@13#.

Now, focusing on the time series, a chaotic transi
should display a power law dependence according to the
merical studies of Grebogi, Ott, and Yorke@3#. Their theory
states that a chaotic transient occurs when a stable ch
attractor becomes unstable, and is destroyed when collid
with the boundary of attraction of a nonchaotic attractor
some critical value of the driving parameter. This type
event, in which the formerly chaotic attractor is destroyed
called a boundary crisis, and the escape timete is the finite
time spent by trajectories initialized in the region of the d
stroyed chaotic attractor moving around its neighborhood
fore escaping to a stable nonchaotic attractor. The ave
duration ^te& of the chaotic transient is given as^te&5(p
2pc)

g, with g the critical exponent andpc the critical pa-
rameter at which the collision occurs. Thus, in a bound
crisis, for parameter values just past the crisis point, the
tractor no longer exists, and the trajectories appear to m
chaotically, like before the crisis occurred, but only for
finite time. This law has been numerically and experime
tally verified in several cases@14#.

In the present work, results for the escape time with
capture probability and the trap densities as the driving
rameters@Eqs. ~2! and ~3!, respectively# are in close agree
ment with a power law dependence predicted by theorie
Ref. @3#. For the capture probability, the chaotic transie
was observed for values of the parameter p
a153.5310214 cm23 s21, which is in good agreement with
the value found for the critical parameterac53.3310214

cm23 s21 in Eq. ~2!. However, the transient behavior for th
trap parameter deserves a closer look.

With the trap density as the driving parameter, chao
transients were observedup to Nt,331015 cm23; for higher
values the system falls into a nonchaotic attractor. The va
found for the critical parameter wasNc54.831015 cm23,
which is very close to the breakpoint of the onset of ov
flow, Nt>4.8531015 cm23. Following the ideas of Grebogi
Ott, and Yorke@3#, the critical parameter for this case shou
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1346 55ALICIA SERFATY de MARKUS
be expected aroundNc5331015 cm23, where the onset o
chaotic transients was observed with theNt parameter de-
creasing@thus, in Eq.~3!, the corresponding critical param
eterNc appears to be subtracted from the driving parame
Nt , rather than the opposite as in Eq.~2!#. Thus it could be
considered a subset of the escape time data for the rang
Nt where all transients were strictly chaotic, as for thea1
case of Fig. 4; nevertheless, it was found that for these
lected points a fit with the power law of Eq.~3! with
Nc5331015 cm23 ~and g251.15! gives a great deviation
Conversely, keepingNc54.831015 cm23 as before gives a
close fit, especially in the lower impurity region. Therefor
there is no critical parameterNc that just passes by to unfol
a boundary crisis and thus a truly chaotic transient, des
the fact that a truly chaotic ‘‘object’’ is actually seen in th
time series. This in turn directly implies that if there is
combination of parameters causing the system to bec
unstable and to overflow numerically in one extreme of
curve of Fig. 5, there is another combination of parame
numericallyresponsible for the chaotic behavior at the oth
end of this unique curve. In fact, such a chaos-produc
alliance of parameters is given~specificallya1 andNt!, as
they physically merge into one common factor: the availa
sites at the trap level. In consequence, those considera
regarding thete(Nt) behavior of Eq.~3! must hold true for
the te(a1) behavior of Eq.~2!; it now becomes apparent wh
both expressions share the same critical exponent, as bot
linked to the same underlying numerical artifact.
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CONCLUSION

The average lifetime of the chaotic transients found in
photoconductor system with one trap level was examin
separately as a function of the capture probability and
trap density. The escape time yielded a power law dep
dence for each driving parameter, as expected for cha
transients, but with exactly the same critical exponent. T
parallelism is considered direct evidence that the integra
algorithm produces the chaotic transient and, thus, that
escape time reflects this unique source. These results a
agreement with a previous study of the photoconduc
model @2#, where simply changing the numerical integratio
technique revealed an algorithm induction of chaos. F
more complex systems, where such a strategy may not
to similar direct results, examining the degree of correlat
between the escape times for two or more independent
rameters could be a value and even easier option in detec
numerically created chaos.
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